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Problems of  the behavior of gravitational waves in the approximation of "shallow water" - motion of a 

solitary wave over the water surface, exit of  a wave to the shore, passage of  a solitary wave over a submerged 

rock - are solved. The solution of  the first problem showed that in modeling the motion of  a solitary 

(soliton-type) wave the "shallow water" approximation breaks down at a ratio of water depth to wavelength 

equal to 0.3. An analysis of the results of  solution of the second problem indicates that the "shallow water" 

approximation cannot be used for calculation of the height of a wave in its exit to the shore but it can be 

used for  estimation of  the distance from the shore where the wave is turned over. I t  follows from the solution 

of the third problem that the "shallow water" approximation is suited only for obtaining a qualitative picture 

of  the distortion of  the profile of  a wave in its motion over a rock. 

Several stages can be distinguished in a theoretical study of the tsunami phenomenon [ 1 ]: 

1) description of the source of the disturbance and the motion of the water under the action of external 

forces (determination of the initial profile of the wave); 

2) formation of a wave structure, which then moves as a whole; 

3) propagation of the wave in a deep-water  portion of the ocean; 

4) incidence of the wave on a shallow-water near-shore portion of the ocean; 

5) reflection of the wave from an uneven part of the bottom and artificial submerged structures. 

In this paper  attention was concentrated on items 2-5. It was assumed that the external  action is caused 

by the fall of a celestial body into the water ra ther  than by motion of the bottom (as is usually adopted) [2 ]. 

A tsunami can apparently arise as a result  of the fall of asteroids and comets into water basins. Numerical 

simulation of the fall of an asteroid with a radius of 10 km, a substance densi ty  of 2.5 g /cm 3, and an energy of 

6.107 Mton in T N T  equivalent into an ocean with a depth of 5 km showed that about 12% of the kinetic energy 

of the body is t r ans fe r r ed  to a water layer ,  thus leading to the appearance  of a powerful wave with a height of 

2 5 - 3 5  km that is capable of disastrous consequences over the entire terr i tory of the earth. In fact, the fall of such 

an asteroid to ear th  is unlikely. However, estimates of the consequences in the fall of an asteroid with a radius of 

0.2 km showed that this event can be accompanied by catastrophic phenomena,  because here a wave with an initial 

amplitude of about  0 . 3 -0 .8  km is formed [3 1. 

The length of tsunami waves in the region of generation is usually close to the size of the site of the 

disturbance. Here  it can amount to only several kilometers. The initial disturbances are grouped into a system 

consisting of two or three waves following each other in the open ocean. A difficulty in modeling this stage (item 

2) is associated with the impossibility of using the "shallow water" approximation. 

As the waves move, they become not too pronounced: their height (i.e., the vertical distance from the crest 

to the tough) amounts  to several meters, and the length can reach tens or even hundreds of kilometers [4 ]. Even 

the deepest parts of the ocean turn out to be shallow for them, and modeling of this stage does not present special 

difficulties because the "shallow water" approximation can be used. The velocity of the wave is determined by the 

Lagrange formula: v = v ~ .  With a mean depth of the Pacific Ocean of about 4000 m, the theoretically calculated 
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velocity of a tsunami wave is 716 km/h .  This seems unlikely, but the maximum measured velocity of a tsunami 

wave was even higher - about  1000 km/h .  In fact, the velocity of the majority of tsunami waves is somewhat below 

the theoretical  value and ranges from 400 to 500 km/h .  

On approaching the shore, a tsunami can grow from 1 - 2  m in the open ocean to several tens of meters  on 

the shore  depending on the coastal relief of the bottom and the shape of the shore line. But, the chief factor with 

which an increase in the height of the wave is associated is the decrease in the depth of the ocean. The  latter can 

be calculated by the A i r y - G r e e n  formula hsh -- hmg"ffm/Hsh [4 ]. 

Having reached a shallow-water shelf, the wave becomes higher, heaves, and turns into a moving wall. In 

modeling this stage of wave motion, the "shallow water" approximation again becomes inapplicable. 

Unde r  certain conditions, a tsunami can evidently appear  not in the form of a wave train but in the form 

of a sol i tary wave (soliton). 

It is very difficult to predict the time of tsunami arrival (and the height of the waves) at certain parts of 

the shore. The  point is that  little is known about the manner  in which the height of a tsunami wave in the first 

kilometers of its path and the velocity of wave propagation along different paths change depending on the relief of 

the ocean bottom. And it is extremely difficult to predict the behavior of a tsunami directly at shores having a 

complex shape,  bays, and inlets. 

The  fact that tsunami are nonlinear waves also considerably hampers reliable prognoses [2 ]. 

In the present paper we used the traditional "shallow water" approximation to solve problems of the behavior 

of gravitational waves. However,  as will be shown in what follows, the range of its applicability is ra ther  limited in 

modeling complex wave phenomena in ocean waters. 

Simplification of the System of Equations in the "Shallow Water" Approximation. The "shallow water" 

approximation means that the amplitude of the wave is much smaller than the depth of the basin (e -- a / h  << 1) 

and the wavelength is much larger than the depth (6 = h / l  << 1) [5 ]. 

Since we are considering long waves, we  can neglect the total acceleration along the O Z  axis in the equation 

o_Y+ot (y' v )  v P  = - (x) 

and can set 

du z Ou z 

dt Ot 

OU z OU z 
- -  + Ux-- x + = O. 

Then 

1 0 P  _ g .  ( 2 )  
Po Oz 

M t e r  integration over  z with account for the boundary conditions we have 

P = Po + Pog ( 2  - z ) .  
(3) 

We determine the derivative of the pressure entering the equation of motion 

OP OP 0 Oz s (4) 

ox - + Pog Ox" 

The  right-hand side of (1) does not depend on the vertical coordinate in all changes of the liquid flow and 

the shape of the free surface. The  pressure is eliminated from the equation of the dynamics using equality (4). Now 

the velocities are independent  of the depth. Therefore,  the derivative with respect to z disappears in the equation 

and, consequently,  the vertical velocity no longer affects the horizontal flow. Thus,  we have 
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Ou x Ou x 02 1 0 P  (5) 
0-5- + U x ~ + g ~ = = -  po ox"  

T h e  second equation is obta ined by integration of the continuity equation 

div h-" = 0 (6) 

with account  for  the kinematic relat ions on the boundary surfaces,  i.e., at the bot tom and on the free surface. As 

a result,  we obtain  a new relation connecting the change in the height of the free surface to the nonuniformity of 
the horizontal  flows under  it: 

$ 

0 zf uxdz + Oz s 
o x  -gi- -h 

= 0 .  
(7) 

If 

s 

U = ? uxdz , 
-h 

then formula  (7) determines the equilibrium between the flow rate through the surface of this column and the 

change in its own volume. 

Since the horizontal velocity does not depend on the vertical coordinate, then (7) can be written in the 
form 

+ (8)  0 zf Oz s 
O---x ux dz + ~ = 0 

- h  

or simply 

o (~x (h + d))  + ~ 
o--~ -~-  = O. (9) 

Thus ,  in the "shallow water" approximation we obtain a one-dimensional  sys tem of equations: 

OUx OUx ozS 10Po 
O--i'- + ux ~ x  + g ~x  = Po Ox ' 

OZ S 
o (ux (h + zS)) + = 0 

Ox --~ ' 

which can be used in modeling gravitational waves on water. 

Motion of  a Solitary Wave  over  a Water Surface. The  motion of a solitary wave over the surface of water  

was calculated mainly  to check the correctness of the operation of the computer program.  Figure 1 presents results  

of calculations for a soliton on "shallow water." Wave profiles at different instants of time are shown. The  initial 

profile has a height  of 0.05 m, and  the water depth is 1 m. The  grid contained 100 nodes on the wave profile. It is 

seen f rom the figure that the calculated value virtually coincides with the analytical one. 

Exit o f  a Solitary Wave to a Shore. Figure 2 presents the results of calculations of exit of a solitary wave 

to a shore  that  are  obtained using the "shallow water" approximation.  Wave profiles at  different instants of t ime 

are shown. T h e  initial profile has a height of 0.05 m, a water  depth of l m, and a height of the wave before turnover  

of 0.071 m (a),  a height of 5 m, a water  depth of 100 m, a wavelength of about 1000 m, and a height of the wave 

before turnover  of 7.18 m (b), and  a height of 5 m, a water  depth of 1000 m, a wavelength of about 4000 m, and  

a height of the wave before turnover  of 10.01 m (c). The grid contained 100 nodes each on the wave profile and  at 

the bottom. 
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Fig. 1. Results of calculations for a soliton on "shallow water": 1) analytical 

solution; 2) calculation, z s, m; t, sec. 
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Fig. 2. Results of calculations for exit  of a solitary wave to a shore (the dashed 

lines indicate the shape of the bottom). 

It is seen from the figures presented that  on approaching the shore the wave profile increases with a 

simultaneous increase in the steepness of the leading front, but at the shore the wave begins to turn over. The 

results obtained show that the longer the wave, the larger the height it has in exit to the shore. 

Thus, the results of the solution of the problem of exit of a wave to the shore indicate that the "shallow 

water" approximation cannot be used for calculation of the wave height in its exit to the shore but it can be used 

for estimation of the  distance to the shore where the wave turns over. Thus ,  the calculations showed that the height 

of the wave before turnover increases by only 40%,  which does not correspond to natural observations. 

Passage of  a Solitary Wave over a Submerged  Rock. Figure 3 presents results of calculations for passage 

of a solitary wave on the surface of a submerged obstacle that are obtained using the "shallow water" approximation. 

Wave profiles at different  instants of time are shown. The initial profile has a height of 0.05 m, a water depth of 

1 m, and a rock height  of 0.5, 0.75, and 0.95, respectively. The maximum height of the wave is equal to 0.057 m 

(t = 7.2 sec) in Fig. 3a, 0.063 m (t = 7.4 sec) in Fig. 3b, and 0.072 m (t = 8.2 sec) in Fig. 3c. The grid contained 

100 nodes each on the wave profile and at the bottom. 

An analysis of the results indicates that the higher the rock, the higher the value attained by the height of 

the wave profile above the rock and the greater  the role played by nonlineari ty in the behavior of the wave. Thus, 

the results of solving the problem of passage of a solitary wave over a submerged rock showed that the "shallow 

water" approximation can be used only for obtaining a qualitative picture of the distortion of the profile of the wave 

in its motion over the rock. 
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Fig. 3. Results of calculations for  a solitary, wave 
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Fig. 4. Results of calculations for  periodic gravitational waves on water for 

ini t ia l  da ta  cor responding  to the  l inear  case: 1) analy t ica l  solution; 2) 

calculation. Z, m. 

Modeling of Periodic Gravitational Waves  on Water .  A zone of depth H is the region of the solution of this 
problem: 

- n o < x <  oo; - H < z < Z ( x , t ) .  

Here  Z(x,  t) is the unknown upper moving part  of the boundary  of the region. We seek it in the class of functions 

once continuously different iable with respect to x and  t that additionally possess the property of periodicity with 
respect to the variable x: 

z (x, t) = z (x + L, 0 .  

Figure 4 presents  results of calculations for initial data corresponding to a ratio of water  depth to wavelength 

equal to 6 = 0.01 and  a ratio of wave height to water  depth  equal to e = 0.01, i.e., a virtually l inear case. The  initial 

profile has a height of 10 cm, a water depth of I00  m, and a wavelength of 10 km. Wave profiles are  shown at 

different instants of t ime.  The  grid contained 151 nodes on the wave profile. It is seen from the results  presented 

that the calculated value virtually coincides with the exact one. 
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Fig. 5. Results of calculations for periodic gravitational waves on water for 

initial data corresponding to a case where nonlinearity begins to exert an 

effect: 1) analytical solution; 2) calculation. 

Figure 5 presents results of calculations for a case where nonlinearity begins to exert an effect. The ratio 

of wave height to water depth is 0.01. In Fig. 5a (the initial profile has a height of 1 cm, a water depth of 1 m, and 

a wavelength of 100 m) wave profiles are shown at different instants of time. The grid contained 151 nodes on the 

wave profile. In Fig. 5b (the initial profile, water depth, and wavelength are the same) wave profiles are shown for 

other instants of time. 

Thus, modeling of periodic gravitational waves on water showed that the "shallow water" approximation 

allows one to obtain a calculated solution that agrees well with the exact one for the linear case. However, the 

calculated solution in a case where nonlinearity begins to exert an effect does not reflect all the special features of 

the exact solution (the so-called Stokes wave). 

N O T A T I O N  

v, velocity of wave motion in the Lagrange formula; g, free-fall acceleration; h, basin depth; Hsn, depth of 

the shallow-water region in the A i r y - G r e e n  formula; hsh, wave height in shallow water of depth Hsh; Hm, depth 

of the ocean in the A i r y - G r e e n  formula; hm, wave height at a depth of Hm; e, b, dimensionless small parameters; 

a, amplitude of the wave; l, wavelength; t, time variable; x, z, spatial variables; u~ vector of the liquid velocity; P0, 

liquid density; P, pressure; l~unit vector in the direction of the gravitational force; P0, pressure of the surrounding 

atmosphere on the surface of the liquid; d /d t ,  substantial derivative; O/Ot, O/Oz, O/Ox, partial derivatives with 

respect to the variables t, z, x, respectively; Ux, component of the velocity vector along the x axis; Uz, component 

of the velocity vector along the z axis; U, total flow rate of water through the surface of a unit column of liquid; H, 

depth of the basin in the problem of modeling periodic gravitational waves; L, period of the function Z(x,  t). 

Subscript: m, maximum. Superscript: s, boundary.  
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